Structural inhomogeneities differentially modulate action currents and population spikes initiated in the axon or dendrites.

نویسندگان

  • L López-Aguado
  • J M Ibarz
  • P Varona
  • O Herreras
چکیده

Action potentials (APs) in CA1 pyramidal cells propagate in different directions along the somatodendritic axis depending on the activation mode (synaptic or axonal). We studied how the geometrical inhomogeneities along the apical shaft, soma, and initial axon modulate the transmembrane current (I(m)) flow underlying APs, using model and experimental techniques. The computations obtained at the subcellular level during forward- and backpropagation were extrapolated to macroscopic level (field potentials) and compared with the basic in vivo features of the ortho- and antidromic population spike (PS) that reflects the sum total of all elementary currents from synchronously firing cells. The matching of theoretical and experimental results supports the following conclusions. Because the charge carried by axonal APs is almost entirely drained into dendrites, the soma invasion is preceded by little capacitive currents (I(cap)), the ionic currents (I(ion)) dominating I(m) and the depolarizing phase. The subsequent invasion of the tapering apical shaft is preceded, however, by significant I(cap), while I(ion) decayed gradually. A similar pattern occurred during backpropagation of spikes synaptically initiated in the axon. On the contrary, when the AP was apically initiated, the dendritic I(ion) was boosted by the apical flare, it was preceded by weak I(cap) and spread forwardly at a slower velocity. Soma invasion is reliable once the AP reached the main apical shaft but less so distal to the primary bifurcation, where it may be upheld by concurrent synaptic activity. The decreasing internal resistance of the apical shaft guided most axial current into the soma, causing its fast charging. There, I(ion) began later in the depolarizing phase of the AP and the reduced driving force made it smaller. This, in addition to a poor temporal overlapping of somatodendritic inward currents within individual cells, built a smaller extracellular sink, i.e., a smaller PS. In both experiment and model, the antidromic (axon-initiated) PS in the soma layer is approximately 30% larger than an orthodromic (apical shaft-initiated) PS contributed by the same number of firing cells. We conclude that the dominance of capacitive or ionic current components on I(m) is a distinguishing feature of forward and backward APs that is predictable from the geometric inhomogeneities between conducting subregions. Correspondingly, experimental and model APs have a faster rising slope during ortho than antidromic activation. The moderate flare of the apical shaft makes forward AP conduction quite safe. This alternative trigger zone enables two different processing modes for apical inputs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptically recruited apical currents are required to initiate axonal and apical spikes in hippocampal pyramidal cells: modulation by inhibition.

Dendritic voltage-dependent currents and inhibition modulate the information flow between synaptic and decision areas. Subthreshold and spike currents are sequentially recruited by synaptic potentials in the apical shaft of pyramidal cells, which may also decide cell output. We studied the global role of proximal apical recruited currents on cell output in vitro and in the anesthetized rat afte...

متن کامل

Modulation of dendritic action currents decreases the reliability of population spikes.

During synchronous action potential (AP) firing of CA1 pyramidal cells, a population spike (PS) is recorded in the extracellular space, the amplitude of which is considered a reliable quantitative index of the population output. Because the AP can be actively conducted and differentially modulated along the soma and dendrites, the extracellular part of the dendritic inward currents variably con...

متن کامل

Proximal persistent Na+ channels drive spike afterdepolarizations and associated bursting in adult CA1 pyramidal cells.

In many principal brain neurons, the fast, all-or-none Na+ spike initiated at the proximal axon is followed by a slow, graded after depolarization (ADP). The spike ADP is critically important in determining the firing mode of many neurons; large ADPs cause neurons to fire bursts of spikes rather than solitary spikes. Nonetheless, not much is known about how and where spike ADPs are initiated. W...

متن کامل

Apical and basal orthodromic population spikes in hippocampal CA1 in vivo show different origins and patterns of propagation.

There is controversy concerning whether orthodromic action potentials originate from the apical or basal dendrites of CA1 pyramidal cells in vivo. The participation of the dendrites in the initialization and propagation of population spikes in CA1 of urethan-anesthetized rats in vivo was studied using simultaneously recorded field potentials and current source density (CSD) analysis. CSD analys...

متن کامل

Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus.

In vitro experiments suggest that dendritic fast action potentials may influence the efficacy of concurrently active synapses by enhancing Ca2+ influx into the dendrites. However, the exact circumstances leading to these effects in the intact brain are not known. We have addressed these issues by performing intracellular sharp electrode recordings from morphologically identified sites in the ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 88 5  شماره 

صفحات  -

تاریخ انتشار 2002